Vertical Versus Horizontal Poincare Inequalities

Assaf Naor

Courant Institute
Bi-Lipschitz distortion

\((M, d_M)\) a metric space and \((X, \| \cdot \|_X)\) a Banach space.

\[c_X(M) = \text{the infimum over those} \ D \in (1, \infty] \text{for which there exists} \ f : M \to X \text{ satisfying}\]

\[\forall \ x, y \in M, \quad d_M(x, y) \leq \| f(x) - f(y) \|_X \leq D d_M(x, y).\]

\[M \xrightarrow{D} X.\]
The discrete Heisenberg group

- The group \mathbb{H} generated by a, b subject to the relation stating that the commutator of a, b is in the center:

$$ac = ca \quad \text{and} \quad bc = cb$$

where

$$c = [a, b] = aba^{-1}b^{-1}$$
Concretely, \(\mathbb{H} = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{Z} \right\} \)

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
The left-invariant word metric on \mathbb{H} corresponding to the generating set $\{a, a^{-1}, b, b^{-1}\}$ is denoted d_W.
Denote

\[\forall n \in \mathbb{N}, \quad B_n = \{ x \in \mathbb{H} : d_W(x, e_\mathbb{H}) \leq n \} \]

Basic facts:

\[\forall k \in \mathbb{N}, \quad d_W(c^k, e_\mathbb{H}) \asymp \sqrt{k} \]

\[\forall m \in \mathbb{N}, \quad |B_m| \asymp m^4 \]
Uniform convexity

The modulus of uniform convexity of \((X, \| \cdot \|_X)\):

\[
\delta_X(\epsilon) = \inf \left\{ 1 - \left\| \frac{x + y}{2} \right\|_X : \|x\|_X = \|y\|_X = 1, \|x - y\|_X = \epsilon \right\}
\]
• X is uniformly convex if $\forall \epsilon \in (0, 1), \quad \delta_X(\epsilon) > 0$.
• For $q \in [2, \infty)$, X is q-convex if it admits an equivalent norm with respect to which $\delta_X(\epsilon) \gtrsim \epsilon^q$.

Theorem (Pisier, 1975). If X is uniformly convex then it is q-convex for some $q \in [2, \infty)$.

\[
l_p \text{ is } \max\{2, p\}-\text{convex for } p > 1.
\]

Theorem. The metric space $((H, d_W)$ does not admit a bi-Lipschitz embedding into \mathbb{R}^n for any $n \in \mathbb{N}$.
Assouad’s embedding theorem (1983)

- A metric space \((M, d_M) \) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

• A metric space (M, d_M) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

• A metric space \((M, d_M)\) is \(K\)-doubling if any ball can be covered by \(K\)-balls of half its radius.
Assouad’s embedding theorem (1983)

- A metric space \((M, d_M)\) is K-doubling if any ball can be covered by \(K\)-balls of half its radius.
Assouad’s embedding theorem (1983)

- A metric space \((M, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

- A metric space \((M, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

- A metric space \((M, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

• A metric space (M, d_M) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

- A metric space \((M, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

• A metric space (M, d_M) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

• A metric space \((\mathcal{M}, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

• A metric space (M, d_M) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

- A metric space \((M, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

• A metric space (M, d_M) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

- A metric space (M, d_M) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

• A metric space \((M, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem

- A metric space \((M, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem

- A metric space \((M, d_M) \) is K-doubling if any ball can be covered by K-balls of half its radius.
Assouad’s embedding theorem (1983)

- A metric space \((M, d_M)\) is K-doubling if any ball can be covered by K-balls of half its radius.
Theorem (Assouad, 1983). Suppose that \((M, d_M)\) is K-doubling and \(\epsilon \in (0, 1)\). Then
\[
(M, d_M^{1-\epsilon}) \xrightarrow{D(K,\epsilon)} \mathbb{R}^N(K,\epsilon).
\]

Theorem (N.-Neiman, 2010). In fact
\[
(M, d_M^{1-\epsilon}) \xrightarrow{D(K,\epsilon)} \mathbb{R}^N(K).
\]

David-Snipes, 2013: Simpler deterministic proof.
\[(M, d_{M}^{1-\epsilon}) \xrightarrow{D(K,\epsilon)} \mathbb{R}N(K,\epsilon).\]

Obvious question: Why do we need to raise the metric to the power \(1 - \epsilon\)?
Obvious question: Why do we need to raise the metric to the power $1 - \epsilon$?

Since in (\mathbb{H}, d_W) we have $\forall m \in \mathbb{N}, \quad |B_m| \asymp m^4$, the metric space (\mathbb{H}, d_W) is O(1)-doubling.

By Mostow-Pansu-Semmes, $(\mathbb{H}, d_W) \not\cong \mathbb{R}^N$.
Proof of non-embeddability into \mathbb{R}^n

By a limiting argument and a non-commutative variant of Rademacher’s theorem on the almost-everywhere differentiability of Lipschitz functions (Pansu differentiation) we have the statement

“If the Heisenberg group embeds bi-Lipschitzly into \mathbb{R}^n then it also embeds into \mathbb{R}^n via a bi-Lipschitz mapping that is a group homomorphism.”

A non-Abelian group cannot be isomorphic to a subgroup of an Abelian group!
Heisenberg non-embeddability

- Cheeger (1999).
- Pauls (2001).
- Austin-N.-Tessera (2010).
- Li (2013).
Heisenberg non-embeddability

- Cheeger (1999).
- Pauls (2001).
- Austin-N.-Tessera (2010).
- Li (2013).

\[\mathbb{H} \text{ does not embed into any uniformly convex space.} \]
Heisenberg non-embeddability

- Cheeger (1999).
- Pauls (2001).
- Austin-N.-Tessera (2010).
- Li (2013).
[ANT (2010)]: Hilbertian case

\[c_{\ell_2}(B_n, d_W) \asymp \sqrt{\log n}. \]
[ANT (2010)]: Hilbertian case

\[c_{\ell_2}(B_n, d_W) \equiv \sqrt{\log n}. \]

A limiting argument combined with [Aharoni-Maurey-Mityagin (1985), Gromov (2007)] shows that it suffices to treat embeddings that are 1-cocycles associated to an action by affine isometries. By [Guichardet (1972)] it further suffices to deal with coboundaries. This is treated by examining each irreducible representation separately.
[ANT (2010)]: q-convex case

If $(X, \| \cdot \|_X)$ is q-convex then

$$c_X(B_n, d_W) \gtrsim_X \left(\frac{\log n}{\log \log n} \right)^{1/q}.$$
[ANT (2010)]: q-convex case, continued

Qualitative statement: There is no bi-Lipschitz embedding of the Heisenberg group into an ergodic Banach space X via a 1-cocycle associated to an action by affine isometries.

X is ergodic if for every linear isometry $T : X \to X$ and every $x \in X$ the sequence

$$\frac{1}{n} \sum_{j=1}^{n-1} T^j x$$

converges in norm.
N.-Peres (2010): In the case of q-convex spaces, it suffices to treat 1-cocycle associated to an affine action by affine isometries.

For combining this step with the use of ergodicity, uniform convexity is needed, because by [Brunel-Sucheston (1972)], ultrapowers of X are ergodic if and only if X admits an equivalent uniformly convex norm.
[ANT (2010)]: q-convex case, continued

Conclusion of proof uses algebraic properties of cocycles combined with rates of convergence for the mean ergodic theorem in q-convex spaces.

Li (2013): A quantitative version of Pansu’s differentiation theorem. Suboptimal bounds.
Almost matching embeddability

Assouad (1983): If a metric space \((M, d_M)\) is O(1)-doubling then there exists \(k \in \mathbb{N}\) and 1-Lipschitz functions \(\{\phi_j : M \to \mathbb{R}^k\}_{j \in \mathbb{Z}}\) such that for \(x, y \in M\),

\[
d_M(x, y) \in [2^{j-1}, 2^j] \implies \|\phi_j(x) - \phi_j(y)\|_2 \geq d_M(x, y).
\]
Almost matching embeddability

Assouad (1983): If a metric space \((M, d_M)\) is \(O(1)\)-doubling then there exists \(k \in \mathbb{N}\) and 1-Lipschitz functions \(\{\phi_j : M \to \mathbb{R}^k\}_{j \in \mathbb{Z}}\) such that for \(x, y \in M\),

\[
d_M(x, y) \in [2^j-1, 2^j] \implies \|\phi_j(x) - \phi_j(y)\|_2 \geq d_M(x, y).
\]

So, define \(f : B_n \to \bigoplus_{j=1}^{O(\log n)} \mathbb{R}^k\) by \(f(x) = \bigoplus_{j=1}^{O(\log n)} \phi_j(x)\).

For \(p \in [2, \infty)\) the bi-Lipschitz distortion of \(f\) is of order \((\log n)^{1/p}\).
Theorem. For every q-convex space $(X, \| \cdot \|_X)$, every $f : \mathbb{H} \to X$ and every $n \in \mathbb{N}$,

$$\sum_{k=1}^{n^2} \sum_{x \in B_n} \frac{\| f(xc^k) - f(x) \|_X^q}{k^{1+q/2}} \leq X \sum_{x \in B_{21n}} \left(\| f(xa) - f(x) \|_X^q + \| f(xb) - f(x) \|_X^q \right).$$
The proof of this inequality relies on real-variable Fourier analytic methods. Specifically, a vector-valued Littlewood-Paley-Stein inequality due to Martinez, Torrea and Xu (2006), combined with a geometric argument.

For embeddings into ℓ_p one can use the classical Littlewood-Paley inequality instead.
Sharp non-embeddability

If $\forall x, y \in B_{2n}$, $d_W(x, y) \leq \|f(x) - f(y)\|_X \leq D d_W(x, y)$,

$$\sum_{x \in B_{21n}} \left(\|f(xa) - f(x)\|_X^q + \|f(xb) - f(x)\|_X^q \right) \lesssim D^q |B_{21n}| \asymp D^q n^4,$$

and

$$\sum_{k=1}^{n^2} \sum_{x \in B_n} \frac{\|f(xc^k) - f(x)\|_X^q}{k^{1+q/2}} \geq \sum_{k=1}^{n^2} \sum_{x \in B_n} \frac{d_W(xc^k, x)^q}{k^{1+q/2}} \geq \sum_{k=1}^{n^2} \sum_{x \in B_n} \frac{k^{q/2}}{k^{1+q/2}} \asymp |B_n| \log n \asymp n^4 \log n.$$
\[
\sum_{k=1}^{n^2} \sum_{x \in B_n} \frac{\|f(xc^k) - f(x)\|_X^q}{k^{1+q/2}} \lesssim \sum_{x \in B_{21n}} \left(\|f(xa) - f(x)\|_X^q + \|f(xb) - f(x)\|_X^q \right),
\]

so,

\[
n^4 \log n \lesssim_X D^q n^4 \implies D \gtrsim_X (\log n)^{1/q}.
\]

\[
c_X(B_n, d_W) \gtrsim_X (\log n)^{1/q}.
\]
Sharp distortion computation

\[p \in (1, 2] \implies c_{\ell_p} (B_n, d_W) \asymp_p \sqrt{\log n}. \]

\[p \in [2, \infty) \implies c_{\ell_p} (B_n, d_W) \asymp_p (\log n)^{1/p}. \]
The Sparsest Cut Problem

Input: Two symmetric functions

\[C, D : \{1, \ldots, n\} \times \{1, \ldots, n\} \to [0, \infty). \]

Goal: Compute (or estimate) in polynomial time the quantity

\[
\Phi^*(C, D) = \min_{\emptyset \neq S \subseteq \{1, \ldots, n\}} \frac{\sum_{i,j=1}^{n} C(i, j) |1_S(i) - 1_S(j)|}{\sum_{i,j=1}^{n} D(i, j) |1_S(i) - 1_S(j)|}.
\]
The Goemans-Linial Semidefinite Program

The best known algorithm for the Sparsest Cut Problem is a continuous relaxation called the Goemans-Linial SDP (~1997).

Theorem (Arora, Lee, N., 2005). The Goemans-Linial SDP outputs a number that is guaranteed to be within a factor of

\[(\log n)^{\frac{1}{2} + o(1)}\]

of \(\Phi^*(C, D)\).
Minimize $\sum_{i,j=1}^{n} C(i,j) \|v_i - v_j\|_2^2$

over all $v_1, \ldots, v_n \in \mathbb{R}^n$, subject to the constraints

$\sum_{i,j=1}^{n} D(i,j) \|v_i - v_j\|_2^2 = 1,$

and

$\forall i, j, k \in \{1, \ldots, n\},$

$\|v_i - v_j\|_2^2 \leq \|v_j - v_k\|_2^2 + \|v_k - v_j\|_2^2.$
The link to the Heisenberg group

Theorem (Lee-N., 2006): The Goemans-Linial SDP has an integrality gap of at least $c_{\ell_1}(B_n, d_W)$.
Cheeger-Kleiner-N., 2009: There exists a universal constant $c > 0$ such that

$$c_{\ell_1}(B_n, d_W) \geq (\log n)^c.$$

Cheeger-Kleiner, 2007, 2008: Non-quantitative versions that also reduce matters to ruling out a certain more structured embedding.

Quantitative estimate controls phenomena that do not have qualitative counterparts.
Khot-Vishnoi (2005): The Goemans-Linial SDP has integrality gap at least \((\log \log n)^c\).
How well does the G-L SDP perform?

Conjecture: \(c_{\ell_1} (B_n, d_W) \gtrsim \sqrt{\log n} \).

Remark: In a special case called *Uniform Sparsest Cut* (approximating graph expansion) the G-L SDP might perform better. The best known performance guarantee is \(\lesssim \sqrt{\log n} \) [Arora-Rao-Vazirani, 2004] and the best known integrality gap lower bound is \(e^{c \sqrt{\log \log n}} \) [Kane-Meka, 2013].
Vertical perimeter versus horizontal perimeter

Conjecture: For every smooth and compactly supported \(f : \mathbb{R}^3 \to \mathbb{R} \),

\[
\left(\int_0^\infty \left(\int_{\mathbb{R}^3} |f(x, y, z + t) - f(x, y, z)| \, dx \, dy \, dz \right)^2 \frac{dt}{t^2} \right)^{\frac{1}{2}}
\]

\[
\geq \int_{\mathbb{R}^3} \left(\left| \frac{\partial f}{\partial x}(x, y, z) \right| + \left| \frac{\partial f}{\partial y}(x, y, z) + x \frac{\partial f}{\partial z}(x, y, z) \right| \right) \, dx \, dy \, dz.
\]

Lemma: A positive solution of this conjecture implies that \(c_{\ell_1}(B_n, d_W) \gtrsim \sqrt{\log n} \).
Theorem (Lafforgue-N., 2012): For every $p>1$,

$$\left(\int_0^\infty \left(\int_{\mathbb{R}^3} \left| f(x, y, z + t) - f(x, y, z) \right|^p \, dx \, dy \, dz \right)^{2/p} \, \frac{dt}{t^2} \right)^{1/2}$$

\[\leq_p \left(\int_{\mathbb{R}^3} \left(\left| \frac{\partial f}{\partial x}(x, y, z) \right|^p + \left| \frac{\partial f}{\partial y}(x, y, z) + x \frac{\partial f}{\partial z}(x, y, z) \right|^p \right) \, dx \, dy \, dz \right)^{1/p}. \]
Equivalent form of the conjecture

Let A be a measurable subset of \mathbb{R}^3. For $t>0$ define

$$v_t(A) = \text{vol}\left(\left\{(x, y, z) \in A : (x, y, z + t) \notin A\right\}\right).$$

Then

$$\int_0^\infty \frac{v_t(A)^2}{t^2} dt \lesssim \text{PER}(A)^2.$$
Proof of the vertical versus horizontal Poincare inequality

Equivalent statement: Suppose that \((X, \| \cdot \|_X)\) is q-convex and \(f : \mathbb{R}^3 \rightarrow X\) is smooth and compactly supported. Then

\[
\left(\int_0^\infty \int_{\mathbb{R}^3} \frac{\| f(x, y, z + t) - f(x, y, z) \|_X^q}{t^{1+q/2}} \, dx \, dy \, dz \right)^{\frac{1}{q}}
\lesssim_X \left(\int_{\mathbb{R}^3} \left(\left\| \frac{\partial f}{\partial x}(x, y, z) \right\|_X^q + \left\| \frac{\partial f}{\partial y}(x, y, z) + x \frac{\partial f}{\partial z}(x, y, z) \right\|_X^q \right) \, dx \, dy \, dz \right)^{\frac{1}{q}}.
\]
Proof of the equivalence: partition of unity argument + classical Poincare inequality for the Heisenberg group.
\[
\begin{align*}
a &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
\text{and} \quad b &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\end{align*}
\]

\[
\frac{d}{d\epsilon} \left. \left. f \right|_{\epsilon=0} \right.
\begin{pmatrix}
\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 1 & \epsilon & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\end{pmatrix}
= \frac{d}{d\epsilon} \left. \left. f \right|_{\epsilon=0} \right.
\begin{pmatrix}
\begin{pmatrix} 1 & x + \epsilon & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}
\end{pmatrix}
= \frac{\partial f}{\partial x}.
\]
\[
\begin{align*}
a &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad b &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \\
\frac{d}{d\epsilon} \bigg|_{\epsilon=0} f \left(\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \epsilon \\ 0 & 0 & 1 \end{pmatrix} \right) \\
&= \frac{d}{d\epsilon} \bigg|_{\epsilon=0} f \left(\begin{pmatrix} 1 & x & z + \epsilon x \\ 0 & 1 & y + \epsilon \\ 0 & 0 & 1 \end{pmatrix} \right) = \frac{\partial f}{\partial y} + x \frac{\partial f}{\partial z}.
\end{align*}
\]
The Poisson semigroup

\[P_t(x) = \frac{1}{\pi(t^2 + x^2)}. \]

\[Q_t(x) = \frac{\partial}{\partial t} P_t(x) = \frac{x^2 - t^2}{\pi(t^2 + x^2)^2}. \]
Vertical convolution

For $\psi \in L_1(\mathbb{R})$,

$$
\psi \ast f(x, y, z) = \int_{\mathbb{R}} \psi(u) f(x, y, z - u) du \in X.
$$
Heisenberg gradient

\[\nabla_{\mathbb{H}} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} + x \frac{\partial f}{\partial z} \right) : \mathbb{R}^3 \to X \oplus X. \]

Proposition:

\[\left(\int_{0}^{\infty} \int_{\mathbb{R}^3} \left(\frac{\| f(x, y, z + t) - f(x, y, z) \|^q}{t^{1+q/2}} \right) dx dy dz \right)^{\frac{1}{q}} \]

\[\lesssim \left(\int_{0}^{\infty} t^{q-1} \left\| Q_t * \nabla_{\mathbb{H}} f \right\|_{L_q(\mathbb{R}^3, X \oplus X)} dt \right)^{\frac{1}{q}}. \]
Littlewood-Paley

By Martinez-Torrea-Xu (2006), the fact that X is q-convex implies

$$
\left(\int_0^\infty t^{q-1} \| Q_t \ast \nabla_H f \|^q_{L_q(\mathbb{R}^3, X \oplus X)} \, dt \right)^{\frac{1}{q}}
$$

$$
\lesssim \| \nabla_H f \|^q_{L_q(\mathbb{R}^3, X \oplus X)}.
$$

So, it remains to prove the proposition.
By a variant of a classical argument (using Hardy’s inequality and semi-group properties),

\[
\left(\int_0^\infty \int_{\mathbb{R}^3} \frac{\| f(x, y, z + t) - f(x, y, z) \|^q_X}{t^{1+q/2}} \, dx \, dy \, dz \right)^{\frac{1}{q}} \leq \left(\int_0^\infty t^{\frac{q}{2}-1} \| Q_t \ast f \|^q_{L_q(\mathbb{R}^3, X)} \, dt \right)^{\frac{1}{q}}.
\]
So, we need to show that

\[
\left(\int_0^\infty t^{\frac{q}{2}-1} \left\| Q_t \ast f \right\|_{L_q(\mathbb{R}^3, X)}^q \, dt \right)^{\frac{1}{q}} \leq \left(\int_0^\infty t^{q-1} \left\| Q_t \ast \nabla_{\mathcal{H}} f \right\|_{L_q(\mathbb{R}^3, X \oplus X)}^q \, dt \right)^{\frac{1}{q}}.
\]
Key lemma: For every \(t > 0 \),

\[
\| Q_t \ast f - Q_{2t} \ast f \|_{L_q(\mathbb{R}^3, X)} \\
\lesssim \sqrt{t} \| Q_t \ast \nabla \mathbb{H} f \|_{L_q(\mathbb{R}^3, X \oplus X)}
\]
The desired estimate

\[
(\int_0^{\infty} t^{\frac{q}{2}-1} \|Q_t \ast f\|_{L_q(\mathbb{R}^3, X)}^q \, dt)^{\frac{1}{q}}
\]

\[
\lesssim \left(\int_0^{\infty} t^{q-1} \|Q_t \ast \nabla H f\|_{L_q(\mathbb{R}^3, X \oplus X)}^q \, dt \right)^{\frac{1}{q}}
\]

Follows from key lemma by the telescoping sum

\[Q_t \ast f = \sum_{m=1}^{\infty} (Q_{2m-1}t - Q_{2m}t \ast f).\]
Proof of key lemma

Since $P_{2t} = P_t * P_t$ we have $Q_{2t} = P_t * Q_t$.

So, by identifying \mathbb{R}^3 with \mathbb{H}, for every $h \in \mathbb{R}^3$,

$$Q_t * f(h) - Q_{2t} * f(h)$$
$$= Q_t * f(h) - P_t * Q_t * f(h)$$
$$= \int_{\mathbb{R}} P_t(u) \left(Q_t * f(h) - Q_t * f(h c^{-u}) \right) du.$$
For every $s > 0$ consider the commutator path

$$
\gamma_s : [0, 4\sqrt{s}] \rightarrow \mathbb{R}^3,
$$

$$
\gamma_s(\theta) =
\begin{cases}
 a^\theta & \text{if } 0 \leq \theta \leq \sqrt{s}, \\
 a^{\sqrt{s}}b^{\theta-\sqrt{s}} & \text{if } \sqrt{s} \leq \theta \leq 2\sqrt{s}, \\
 a^{\sqrt{s}}b^{\sqrt{s}}a^{-\theta+2\sqrt{s}} & \text{if } 2\sqrt{s} \leq \theta \leq 3\sqrt{s}, \\
 a^{\sqrt{s}}b^{\sqrt{s}}a^{-\sqrt{s}}b^{-\theta+3\sqrt{s}} & \text{if } 3\sqrt{s} \leq \theta \leq 4\sqrt{s}.
\end{cases}
$$
So, $\gamma_s(0) = 0 = e_{\mathbb{H}}$ and

$$\gamma_s(4\sqrt{s}) = \left[a^{\sqrt{s}}, b^{\sqrt{s}}\right] = [a, b]^s = c^s.$$

Hence,

$$Q_t * f(h) - Q_t * f(hc^{-u}) = \int_0^{4\sqrt{u}} \frac{d}{d\theta} Q_t * f\left(hc^{-u} \gamma_u(\theta)\right) d\theta.$$
By design, $\frac{d}{d\theta} Q_t * f(hc^{-u} \gamma_u(\theta))$ is one of

$$\partial_a Q_t * f(hc^{-u} \gamma_u(\theta)) = Q_t * \partial_a f(hc^{-u} \gamma_u(\theta))$$

or

$$\partial_b Q_t * f(hc^{-u} \gamma_u(\theta)) = Q_t * \partial_b f(hc^{-u} \gamma_u(\theta)),$$

where $\partial_a = \partial_x$ and $\partial_b = \partial_y + x\partial_z$.

We used here the fact that since Q_t is convolution along the center, it commutes with ∂_a, ∂_b.
We saw that

\[Q_t * f(h) - Q_{2t} * f(h) \]

\[= \int_{\mathbb{R}} P_t(u) \left(Q_t * f(h) - Q_t * f(hc^{-u}) \right) du \]

\[= \int_{\mathbb{R}} P_t(u) \int_{0}^{4\sqrt{u}} \frac{d}{d\theta} Q_t * f \left(hc^{-u} \gamma_u(\theta) \right) d\theta du. \]

Now the key lemma follows from the triangle inequality and the fact that

\[\int_{0}^{\infty} \sqrt{u} P_t(u) du \asymp \sqrt{t}. \]